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Abstract

Accurate simulation of plasmas often requires a solution of the kinetic equation, either directly by solving the Boltz-

mann equation (BE) or indirectly by means of �particle� simulations. However, kinetic simulations are still too comput-

ationally intensive for many large scale 3D simulations. In this paper we examine the matching between a kinetic

simulation and fluid models which we use in conjunction to form a �hybrid� plasma model of the breakdown process.

The kinetic model is tested for convergence with respect to mesh size Dx and time-step Dt. We then implement fluid

models in an attempt to reproduce the results of the kinetic model. To do this it is necessary to have a fluid model which

provides accurate simulations with a wide range of Dx and Dt. We accomplish this by means of a propagator (or

Green�s function) approach. The propagator method reduces to a finite difference scheme at small Dx,Dt and gives cor-

rect results across a wide range of parameters. For intermediate Dx,Dt it is necessary to take considerable care to derive

the correct propagator. We apply the propagator method to two fluid models; one uses parameters which are functions

of the electric field, and the other one uses parameters which are functions of the mean kinetic energy (this version also

explicitly conserves energy locally). The details of the fluid models employed make a profound difference to the predic-

tion of the breakdown.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to examine the effectiveness of numerical techniques for the simulation of

electrical breakdown of a gas. Breakdown is in some regards more difficult to simulate than other aspects of

plasma behavior. During the initial phases of breakdown the electron density is expected to grow exponen-

tially in time (and sometimes in space). Modest differences in the predicted ionization rate [1,2] can lead to
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very large differences in density in this phase. Alternatively, near the threshold for the onset of breakdown

there is a sensitive region where we may predict growth or decay in the density, and only small changes in

parameters or models are needed to make the difference between one or the other.

The most accurate simulation of breakdown calls for a kinetic treatment, such as the solution of the

Boltzmann equation (BE) for the charged particle distribution function, or the numerical simulation of mo-
tions of charged particles. There are numerous plasma simulations using kinetic treatments such as [3–8].

However, kinetic simulation describes the plasma in great detail and is very computationally intensive in

practical situations so it is desirable to have a fluid equation for the charged particle density which approx-

imates the behavior predicted by the BE. Fluid simulations have been abundantly described; [17–21]. Such

simulation is frequently attempted using a variety of �hybrid� codes [9]. In a hybrid code, detailed calcula-

tions at the level of the BE are done to calibrate a fluid calculation (providing values for quantities such as

the diffusion coefficient D, the mobility l, the ionization rate S, and so on).

A key parameter in the fluid model employed here is the fraction, a, of the energy which is put into ion-
ization, as opposed to excitation or other inelastic processes (or radiation losses). In effect, the solution of

the BE provides the local value of a, as a function of the other variables. a can vary significantly, and this

variation is largely what provides the range of possible final densities.

Any model which conserves energy, even approximately, and which uses the correct a (which may mean

using an approach in which a is never explicitly employed, but which nevertheless results in the right frac-

tion of the energy being put into ionization) will give roughly the right amount of electrons. This is espe-

cially true in a homogeneous plasma. Inert gases (Xe, Ne, Ar, etc.) should have a very high a which makes

modeling them more straightforward.
We have examined the capability of fluid models to reproduce the behavior of the BE, in order to assess

how accurate a fluid model of breakdown can be made. One issue of some concern was the value of the Dx
and the Dt which can be used. The BE solution requires very small values of Dx and Dt, because the natural
scales of the problem are rather short. It is of some concern whether the fluid equation must be restricted to

the same range of Dx and Dt. We thus employed a �propagator� (Green�s function) method [38–41] to solve

the fluid equations (similar to our BE solution technique) which works well for a wide range of Dx and Dt.
The propagator method is of some interest in itself. It provides a simple scheme for solving a discretized

fluid equation, which can be reduced to a finite difference scheme for small Dx,Dt but which works equally
well for a wide range of Dx,Dt since the propagator does not necessarily obey the Courant limit. One ver-

sion of the scheme has been implemented in a form which explicitly and locally conserves particles and en-

ergy. The finite difference forms of the fluid equations involve evaluating derivatives; in this problem those

derivatives are not necessarily well described by finite differences because the gradients are very steep

indeed. The propagator does not require the calculation of derivatives and is easier to implement than

the finite difference scheme.

Eastwood [39,40] has presented a rather general treatment of methods of characteristics, including

Lagrangian schemes, applied to a one dimensional fluid flow. Eastwood distinguished a number of different
ways of handling the problem, and although our methods do not entirely fall within his framework, there

are some aspects of his categorization which are illuminating. The most pertinent distinction between

schemes, from our point of view, reflects whether the scheme (a) takes an initial density defined on mesh

points and propagates it forward in time, along the characteristics, or (b) if the scheme focuses on a final

cell and looks back along the trajectory to find the initial density. In case (b), when looking back along the

trajectory one is (in general) forced to interpolate between mesh points to find the �old� density on the tra-

jectory/characteristic. Case (a) requires that density from an �old� mesh point be propagated forward and

then shared between mesh points. Eastwood prefers case (b) for reasons of accuracy in the problem he
was studying. We find compelling reasons to use case (a) which we shall point out shortly. The review paper

by Staniforth and Cote [44] considers Eastwood�s work, but their discussion is limited to case (b), as their

Figs. 1 and 2 show. These figures define what we mean by �looking back along a trajectory� very clearly. The
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density at a mesh point labeled C at time tn + Dt is equal to the density at time tn � Dt, at a point A which

does not lie on the mesh. The problem, for them, is in large part to locate the point A and to interpolate to

find the density at point A. As they remark in their conclusions, the class of schemes they consider does not

in general formally conserve quantities (but they do appear to behave acceptably). This last point is a crit-

ical one, for us. We discovered very soon [45] that for simulations of electron systems, it was imperative to
conserve numbers and energy (and sometimes other quantities such as angular momentum) very precisely.

A scheme which falls in case (a) can be made to do this, by focusing on conservation as applied to the con-

tents of one initial cell at a time. We have remarked on this in a number of publications. Such careful con-

servation, particularly of energy, was not the main concern for Eastwood. Case (a) is distinct from other

Lagrangian/method of characteristics approaches, in this important regard, which allows us to build in con-

servation laws. A similar approach was taken more recently by Leslie and Purser [46,47], who also note the

possibility of achieving mass conservation, and by others who have built on their work (such as [48]). They

construct �forward trajectories� and employ cascade interpolation, which consists of a series of 1D interpo-
lations. Conservation is not automatic, but can be achieved. Their interpolation is thus not equivalent to

ours (the propagator method). Conservation seems to be more straightforward in our scheme. Most impor-

tantly for the present paper, one of the issues which we address here concerns how to build diffusion into

the propagator while maintaining the correct drift velocity. Staniforth and Cote do not include diffusion in

their treatment; this simplifies the problem greatly. In our case the accuracy of the scheme in the presence of

diffusion is critical, and this is the main point which we address here.
Fig. 1. Schematic of the moving cell launched from (n0, j0,k0) and moving to its final position centered at (n1, j1,k1). Particles are then

put back into mesh cells.

Fig. 2. A simple propagator for the particles initially in the mesh cell i moves (for example) a distance dxE = �3.1Dx and expands both

sides by dxD = 0.4Dx after a time-step Dt. Fractions Fi� 4, Fi� 3, and Fi� 2 of the propagator overlap the mesh cells i � 4, i � 3, and

i � 2, respectively.
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2. Numerical models

Several numerical models have been employed and developed to characterize the breakdown of a gas. In

this paper, we first employ a kinetic model, the convective scheme or CS (which was described earlier in

[9,10]) to describe the electron distribution function (EDF) during the breakdown phase. The CS will be
briefly described next. Second, a fluid model based on a �propagator� method is developed. To get good

agreement with the kinetic model, the values of transport parameters and some reaction rates from the

CS are used in the �propagator� model. The proposed �propagator� model will be described and validated

in Section 2.2. Later in Section 3, the results from kinetic and fluid simulations will be discussed and com-

pared, and simulations using the the kinetic and fluid models in an AC field will also be performed.

2.1. Kinetic model – convective scheme

In this section we briefly recap the main features of the BE solver, which we refer to as the CS. The CS

has been applied to a wide range of transport problems in plasma applications and discussed in [11–16]. The

CS uses a distribution function defined as a density in a cell while particle methods such as particle-in-cell

and Monte Carlo use super particles. Given a fixed mesh which consists of the cells into which phase space

is divided, moving cells move particles by stepping in time to the final positions, x, associated with the com-

ponents of the velocity parallel and perpendicular to the x axis, (vx,v^), together with the applied field. The

mesh cell is assigned values of (1) position x, (2) speed, v and (3) the direction cosine of the velocity relative

to the x axis, l, which can be discretized using labels (n, j,k). In Fig. 1, the initial cell centered at (n0, j0,k0)
moves to a new position with its center in the cell labeled by (n1, j1,k1) according to the equations of motion

[10]
Dx ¼ vDt; ð1Þ

Dv ¼ q
me

EDt; ð2Þ
and then its contents are carefully put back into the neighboring mesh cells corresponding to positions

x 0,x00, speed v 0,v00, and directions l 0,l00 (not shown). The numbers put back in each cell are determined

by an �overlap rule� [9,10]; the number of particles is exactly conserved. This scheme also conserves the total

energy of the particles by considering the total energy of the particles in the initial cell, and the potential

energy in each spatial cell into which the particles are being put back. By taking the potential energy to

be constant within each spatial mesh cell, the new kinetic energy of particles that are added back into each
spatial cell considered separately can be calculated from the initial total energy and the potential energy of

the final cell (which in general is different at x 0 and x00). In other words, the kinetic energy of particles put

back at x 0 is different from that for particles put back at x00, but the average total energy is the same in both

cells, since they are both equal to the initial total energy of a single particle. (When many cells are taken

together, the fate of them all shows how the phase space volume evolves, much as the many particles in

a particle simulation do, since the motion of a CS cell reflects the motions of the particles within it.)

The CS model was tested for convergence with respect to Dx, and Dt. It was found, as usual, that

Dx [ kel/2, Dt [ 0.1sc (where kel is elastic mean free path, and sc is the elastic collision time) were
necessary.
2.2. Propagator method – fluid model

The objective in this paper is to examine the accuracy of various approaches to describing the break-

down of a gas. In addition to the kinetic model, one of the tools we need is a fluid model of a plasma.
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Many techniques have been developed to solve transport (fluid) equations such as ones reported by Wu

et al. [30] and Elta et al. [31]. In this paper we propose a fluid model which works well for arbitrary sizes

of Dx and Dt. For each particle species the single-particle density (which is space and time dependent) can

be written as
f ðx; tÞ ¼
Z Z

Pðx; t; x0; t0Þf ðx0; t0Þdx0; t > t0; ð3Þ
where the kernel of the integral, Pðx; t; x0; t0Þ, is the propagator for a particle at position x 0 at time t 0. A

simple version and discussion of this propagator were given earlier by Adams et al. [41]. The propagator

in principle updates the position of an initial delta function density. In this paper we develop a propagator

for an initial density which is unity in a short region of length Dx, and zero elsewhere, i.e. in a cell of a mesh,

since this is the appropriate equivalent to the delta function in numerical calculations. This fluid model con-

sists of a simple propagator method which is able to describe the final position of the contents of a moving

cell after a time step Dt. This �propagator� is approximated by moving the initial cell a distance dxE, to de-
scribe the effect of the applied electric field E, where
dxE ¼ leffEDt; ð4Þ
and allowing both of its ends to expand outwards by an additional distance dxD to describe diffusion
dxD ¼
DeffðDt=DxÞ if Dt is small;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DeffDt

p
if Dt is large:

�
ð5Þ
leff and Deff denote the effective mobility and effective diffusion coefficient respectively which will be de-

scribed more in Section 2.2.4. We combine these forms of dxD by adding them reciprocally. In the cases

we examine below, Dt is small enough so that the small Dt form of dxD is always used.

A simple overlap rule [9] (illustrated by example in Fig. 2) then implies that the fractions Fj going to the
neighboring cell j in time Dt are given by
F j ¼
dxj
Cl

; ð6Þ
where dxj is the length of the portion of the moving cell which overlaps final cell j. Cl = Dx + 2dxD is the full

length of the moving cell.

In the schematic of the propagator shown in Fig. 2, we can find the mean displacement d�x from
d�x ¼ F i�4ð�4DxÞ þ F i�3ð�3DxÞ þ F i�2ð�2DxÞ; ð7Þ

where
F i�4 ¼
j dxE j þdxD � 3Dx

Dxþ 2dxD
; ð8Þ

F i�3 ¼
Dx

Dxþ 2dxD
; ð9Þ

F i�2 ¼
dxD� j dxE j þ3Dx

Dxþ 2dxD
: ð10Þ
Eqs. (7)–(10) yield d�x � �3:1Dx ¼ dxE but the agreement is not exact. Unfortunately, it turns out that this

propagator usually does not give the correct d�x ¼ dxE when dxE, dxD < Dx; it is necessary to apply a cor-

rection to dxE which will be discussed next.
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2.2.1. Mean displacement correction

The propagator model works well for values of dxE,dxD � Dx and gives exactly the right mean displace-

ment d�x ¼ dxE when dxD = 0. (If dxD = 0, only two values of F (Fi� 4 and Fi� 3 in the example above) are

needed, so Eq. (10) for Fi� 2 does not apply.) However, for dxE,dxD [ Dx (for both dxE > dxD and

dxD > dxE cases), finite mesh size effects mean that using a straightforward overlap rule to map the moving
cell back to the mesh yields d�x 6¼ dxE. An example of this is shown in Fig. 3. From Fig. 3, the mean dis-

placement would be
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d�x ¼ j dxE j þdxD
Dxþ 2dxD

ð�DxÞ: ð11Þ
Substituting values of dxE and dxD into (11) yields d�x ¼ �0:36Dx which is not equal to dxE. To get the cor-

rect mean displacement, a correction for dxE; dx0E must be used, where in this one case
dx0E ¼ � j dxE j
Dx

ðDxþ 2dxDÞ � dxD

� �
: ð12Þ
Then substituting (12) instead of dxE in (11) gives the correct mean distance, d�x ¼ dxE.
All the different cases are discussed in Appendix A, where the values of dx0E which result in d�x ¼ dxE (as

in Eq. (4)) are given. The corrections are for the case dxE < 0.

2.2.2. Conservation of energy

The present method of conservation of energy explicitly employs the potential energy in each cell to find

the kinetic energy. Particles which fall from one cell to the next pick up exactly the potential energy differ-

ence between the cells. Suppose a group of electrons initially has mean energy of j (see Fig. 4(a)). The cell

(of length Dx) they are in will move by dxE and expand in length by dxD at both ends according to Eqs. 4

and 5 (shown in Fig. 4). Finally, some fraction of electrons in the group (determined by the cell length of the

moving cell and the overlap length between the moving cell and the fixed cell) gains potential energy of DW
(=qDV) and is put in the final cell where they have the final mean energy of j + DW. The rest of the group
stay in the initial cell with the same energy they originally had as shown in Fig. 4(c). A carefully set up FD

scheme does reproduce this, as we shall see below, but it may be more complicated to ensure energy con-

servation. The effect of using various schemes to handle the calculation of the rates is shown in the next

section. 1
s an aside, we note that there are circumstances in which it would be appropriate to allow particles which have moved upstream

aid to have the same average energy as the group of particles they started in. In equilibrium the distribution is expected to be a

ellian with the same temperature (but different density) at different points in space. The situation studied here (breakdown) is far

quilibrium. The distribution in this case tends to drop more rapidly at high energy than at low energy, which means that as the

es go �upstream� there will be a decrease in mean energy, even in the absence of collisions. We are effectively treating our

ution as being monoenergetic, with no tail; every particle in effect has the same energy, and if they go upstream their kinetic

drops because their potential energy goes up. In reality, the distribution has a tail and some of the less energetic particles cannot

pstream while the more energetic particles can go upstream. In a Maxwellian, the particles which are found upstream have the

ean kinetic energy as the group they came from, despite individual particles losing kinetic energy, because they came from the

h the correct energy distribution to maintain the mean kinetic energy as they move in a potential well. It would be possible to

ve energy and still allow the particles to have the mean energy as they go upstream. This would be done by subtracting enough

from the cell they started in (cell i) to allow the particles which went upstream (to cell i + 1) to have been the high-energy tail of

tribution. Let the mean energy in cell i be j and the potential energy difference between cell i + 1 and cell i be

W ¼ �qðV ½iþ 1� � V ½i�Þ:

se the tail particles have a mean kinetic energy of j + W in cell i. Then the particles� final mean kinetic energy (in cell i + 1) would

t their potential energy would beW per particle higher than in cell i. If n particles moved from i to i + 1, then n(j + W) would be

cted from the total energy in cell i. This is not justifiable here, however. Methods to make the fluid model more accurate will be

ed later.



Fig. 4. The schematic shows how the moving cell in �fluid – R(j)� moves and conserves energy. (a) The particles in the initial cell have

mean energy j. (b) The fluid cell moves by a distance dxE and expands in length by dxD. (c) After a time step Dt, a fraction of particles

in the original cell is put in the final cell with the mean energy of j + DW.

Fig. 3. A cell moves by dxE = �0.3Dx and gets expanded by dxD = 0.2Dx after a time-step Dt.
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2.2.3. Propagator method and finite difference scheme

The proposed propagator method, applied to the case where dxE and dxD are both less than 0.5Dx (for

both dxE > dxD and dxE < dxD) can be seen to give reasonable finite difference (FD) expressions. To show

this, we consider applying the propagator to a single initial cell. The propagator moves the initial cells one
at a time and redistributes them – it does not consider final cells one at a time, as in FD. Consider dxE = 0

and from Eq. (5), with Dt very small, Dt < 2(Dx)2/D,
dxD ¼ D
Dt
Dx

: ð13Þ
Now consider the FD approach. For an initial density ni in cell i, and with all other densities equal to zero,

we will say that there is a flux
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CD ¼ Dni
Dx

ð14Þ
flowing into each neighbor cell. The number of particles entering the cell in Dt is CDDt; the change of den-
sity in the neighbor cell is
Dn ¼ DDt

ðDxÞ2
ni: ð15Þ
This is equivalent to the usual FD expression. It is also equivalent to our propagator, where we say that the
initial cell expanded by a length dxD. The overlap rule will place a fraction f of the contents in cell i into cell

i + 1, where
f ¼ dxD
Dxþ 2dxD

: ð16Þ
Then for dxD � Dx,
f ¼ DDt

ðDxÞ2
ð17Þ
in agreement with above. Similar arguments can be made in regard to the drift term. Similarly, the energy
conserving aspect of the propagator can also be reduced to the FD expression, when dxE, dxD � Dx, and
dxD < dxE. Suppose that the particle density in an initial cell i is ni. The change in energy of the cell i due to

cell i + 1, according to our energy conserving propagator, is
Dðn�EÞi ¼
niþ1

�Eiþ1dxiþ1

Dx
ð18Þ

¼ niþ1
�Eiþ1vdr
Dx

ðDtÞ; ð19Þ
where dxi+1 = vdrDt, and vdr is a drift velocity which denotes the net effect of mobility and diffusion. The

change in energy in the cell i due to losses of particles from cell i and due to heating in Dt is
Dðn�EÞi ¼ QiDt �
ni�Eidxi
Dx

; ð20Þ
where Qi is the heating rate. Combined, these are equivalent to an upwind FD version of the equation of
conservation of energy,
oðn�EÞ
ot

þ oðn�EvdrÞ
ox

¼ Qi: ð21Þ
2.2.4. Fitting fluid parameters from the kinetic model

To derive a fluid model which matches the kinetic simulation as closely as possible, we generate the

steady state electron distribution fe, in a homogeneous plasma for a given electric field. We then load this

distribution into a single cell i of the spatial mesh, and calculate the fractions of the particles in cell i mov-

ing into neighboring cells in N time steps of length Dt. We calculate effective values of the diffusion coef-

ficient, Deff and mobility, leff that reproduce the mean position and the width of the curve. (The use of a

single cell is consistent with the principle of superposition which underlies the propagator method. The

result for any spatial profile can be constructed by use of a sum of densities in single cells, so no generality

is lost in this way. Deformations in phase space are properly taken into account in the CS. In the limit of
using many cells, the procedure follows particles along their orbits throughout the entire phase space –

equivalent to using a particle simulation to follow their orbits, but putting particles back into phase space
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cells occasionally. This procedure describes the deformation in the shape in phase space, although this

may not be evident if one only considers the fate of one cell. Considering one cell is somewhat like con-

sidering one particle in a particle simulation, which might not show how the phase space volume evolves.

The propagator used in calculation of the distribution function tracks the motion of the particles in phase

space very accurately, employing the relevant conservation laws explicitly. The only errors expected from
it are a modest amount of numerical diffusion caused by the finite mesh size. The method has been used in

the past and calibrated carefully in a wide range of settings which lend support to these claims (see e.g.

[9,10,42,43])). The values of Deff and leff are obtained as functions of electric field, E, and also the mean

kinetic energy, j, as are the ionization rate, I, and the fraction of the energy used in ionization, a. We then

have the option of running the fluid code in a mode where all quantities (Deff,leff, I,a) are found from E
which is denoted as �fluid – R(E)�. Alternatively we can find the mean kinetic energy j in each cell i by

conserving energy and finding (Deff,leff, I,a) from j, denoted as �fluid – R(j)�. (In general, in a time-

dependent energy conserving code, j is not simply a function of E, so one does not expect that,
e.g. l ” l(j) implies l ” l(E).) The potential in the cells is treated as a staircase [10] and the change in

kinetic energy is found as usual in the CS [10]. The energy conserving code is more accurate; exact energy

conservation makes a noticeable difference.
2.2.5. Length and time scales

There are (at least) two natural length scales in this problem; the mean free path, and the length scale for

energy gain,
L� ¼
�c

q j E j ; ð22Þ
where �c is some characteristic energy. �c could be the mean particle energy, but for now let us suppose it is

the ionization energy. To make our point better, let us further divide L� by a, so that L�i becomes the dis-

tance we expect electrons to go before each electron causes an ionization. The density of electrons has the

capability of rising exponentially, on the scale of L�i . It is thus not reasonable to expect the density to be

uniform on the scale of L�i , and one should choose the mesh size
Dx � L�i : ð23Þ

However, the length scale of L� = �c/qjEj is also an upper limit on the mesh size, if we are to be able to cal-
culate the mean electron energy, and if a is small this scale is considerably smaller than L�i . Similar remarks

apply to the time step Dt. (There may be some variant of the Scharfetter–Gummel (SG) scheme [37] which

could be derived to fit this situation. The SG scheme allows electron density in a semiconductor to be

described semi-analytically, so that the exponential variation is captured on a mesh which would otherwise

be much too small. The SG scheme is not directly applicable, however.)

The time scale sinel for inelastic collisions of energetic particles is of the order of 10sel. A large fraction

(essentially all) of the particles have enough energy to undergo some sort of inelastic collision. It is impor-

tant in any of these simulations to ensure that the fraction of the energy lost to inelastic processes at each
time step is small, otherwise the energy will fluctuate unphysically. This means that even in a fluid model we

should expect to take steps Dt� sinel. If the particles go a long way in space in going to the next spatial cell,

they will artificially gain a great deal of energy and will do considerably more ionization than they should,

because they will reach an energy where ionization is likely, without having to pass through lower energies

where excitation dominates. A large Dx is thus particularly problematic, and it is compounded since the

density is growing exponentially so small errors rapidly become large ones. This artifact would appear

to only exist in an energy-conserving scheme, but the problem with large Dx is not removed in the scheme

which does not conserve energy (see the next section). In the next section the results of the full CS and �Flu-
id� models will be shown and compared.
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3. Simulation results

3.1. Mesh size and time step in the propagator method – fluid model

This section considers the effect of increasing Dx and Dt in the fluid model. While our study is
for the propagator method we expect our main conclusions to hold for an energy-conserving FD

scheme.

Both of the fluid simulations, fluid – R(j) and fluid – R(E) (where R(j) denotes a fluid code using

(Deff,leff, I,a) as functions of mean kinetic energy j, and R(E) denotes a fluid code using (Deff,leff, I,a) as
functions of electric field E) have been scrutinized, on a mesh on which the kinetic simulation is converged

(Dx = 2.5 · 10�7 m and Dt = 5.0 · 10�14 sec serves as a base case), as well as on the mesh with ten times the

mesh spacing (10Dx), and with time step (Dt, 10Dt, 20Dt, . . . , 100Dt). The fluid models are employed to sim-

ulate a dielectric barrier discharge in N2 (0.3 mm gap between two 0.9 mm dielectric slabs (�r � 3.0)) at
atmospheric pressure. The R(E) model, on the base mesh (Dx,Dt), gives considerably higher densities than

the kinetic model. The R(j) model does well in the comparison to the kinetic model, which will be discussed

in the next section. We thus focus on the R(j) model, since the R(E) model is not reliable even on the base

mesh [32–36].

Comparing the energy conserving – R(j) simulations, without ionization, the peak positions of the den-

sities for all cases are in the same place at the same time, with approximately 10% variation in magnitude as

seen from Fig. 5(a). A slightly different diffusion coefficient D is evident. Corrections to the variance of the

pulses can be calculated and applied to the propagator if needed but, unlike the correction to the mean dis-
placement, it has not been done here. On the other hand, in the presence of ionization, the electrons tend to

move faster (see Fig. 5(b)). The mean energy in the case with ionization is lower than in that without ion-

ization and consequently a bigger value of l is used; as a result, the electrons move faster (Fig. 6). With

ionization, for a mesh spacing of 10Dx with Dt, and 10Dt, the electrons start to go faster. The density also

rises faster with time as Dt is increased, and in fact the density starts to grow unphysically large (the run

goes unstable for t J 20Dt). This is despite the fact that the time step is well below the Courant limits

and the dielectric relaxation time.

The fluid – R(E) scheme does not go unstable and is reproducible up to quite large values of Dt. The
behavior of the R(E) method is not surprising – the problem with large Dx and Dt is caused by energy con-

servation. Fig. 7 shows the electron densities resulting from the fluid – R(E) simulations without and with

ionization. The R(E) scheme with the bigger mesh size (10Dx,Dt) and (10Dx, 10Dt), gives lower electron

density than the base case (Dx,Dt) by about 10%. The (10Dx, 100Dt) case brings the density back closer

to the base case, especially in the absence of ionization.

To show the effects of the use of wide range of Dx and Dt, the fluid – R(j) model is used to simulate a 5

mm discharge of Nitrogen gas between two 1.5 cm dielectric slabs. The electron densities at 1, 1.5, and 2 ns

without and with ionization are shown in Fig. 8(a) and (b) consecutively. We observe (a) that in the absence
of ionization, the results are virtually indistinguishable. This demonstrates that the propagator works as

intended, for all Dx and Dt considered. However, (b) when ionization is added, the agreement is lost. As

we argue throughout this paper, only the smallest Dx and Dt are suitable for studying the discharge during

breakdown. This is not a limitation of the propagator, which does not handle ionization. This limit is im-

posed by the need to use small Dx to resolve energy balance in the presence of ionization and in a very

strong electric field.

In conclusion, an energy conserving scheme is needed for accuracy, but energy conservation limits us to

Dx [ k/2 and Dt � sc. The real limit on Dx in the fluid simulations may be that Dx � Lei (say
Dx � 10%Le); this limit is likely to be important in the kinetic simulations as well. (We emphasize that these

limits are not only for this method; they are for any simulation of breakdown that operates at the level of

the kinetic or fluid equations.)
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There is a considerable literature, for instance, [22–30] on the use of flux-corrected transport (FCT) to

correct for numerical diffusion (ND). ND, in the sense the term is usually used, does not appear to be the

main problem in this work. Using different values of (Dx,Dt) in Fig. 8(a) (see later in Section 3.2) made

essentially no difference, which shows that ND is not an issue in those runs. Further, in Fig. 8(b) and other

runs reported here, the case with (10Dx, 10Dt) gives less good results than our base case, whereas if the usual

ND were the problem, the (10Dx, 10Dt) case would perform better. For these reasons, and in the light of the
discussion in Section 2.2.5, we do not expect FCT to remedy the problem with energy conservation which

occurs when Dx is large.
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3.2. Comparison of numerical models

Here, we have employed the full kinetic model, the fluid – R(j) model, and the fluid – R(E) model to
simulate a similar discharge geometry as in the previous section. Since the kinetic CS requires a long

run-time and large computer usage, a shorter discharge, with a 0.2 mm gap between two 0.6 mm dielectric

slabs, is simulated.

A series of simulations has been done which illustrate the behavior of the models. These were initialized

with a very small number of electrons so that the electric field in the discharge is constant at first

(jEj = 6.66 · 104 V/cm). The time evolution of the number of electrons calculated from the models is shown

in Fig. 9.

The density plots show that the fluid – R(j) model agrees very well with the full CS. The fluid – R(E), on
the other hand, overestimates the density by an exponentially growing factor. It overestimates most notice-

ably on the upstream side, because without energy conservation, it allows electrons which should have very

little energy to diffuse upstream (to a higher potential energy region) and do ionization; hence the number

of electrons is overestimated.

3.3. Simulations in AC field

To show the effectiveness and validate the accuracy of the proposed fluid model, in this section, the ki-
netic model (CS) and the fluid – R(j) model were employed in an AC electric field. The geometry is as for

the DC field, (0.2 mm Nitrogen DBD at atmospheric pressure) supplied by a 4 kV source with frequency of

300.0 GHz, the highest frequency for which the transport coefficients (the mobility and diffusion coefficient)

and the parameter a are valid, since they have all been obtained in the collisional limit. The growth rates of

the electron density, for various amplitudes of the electric field within the same range as the DC field, have

been obtained and illustrated in Fig. 10. The CS results are consistently slightly below the fluid results, be-

cause the CS runs are converging rather slowly to essentially the same value as the fluid. The growth rates

for the AC field are lower than those for the DC field. This is probably because the AC discharge has a
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lower average field, thus the electrons gain a lower mean kinetic energy, and both the power and a are con-

sequently lower.
4. Conclusions

In summary, we have developed and employed a propagator method within fluid models of gas break-

down; R(j) and R(E), as well as a kinetic CS model. The R(j) and kinetic CS models can be made to agree
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well subject to certain restrictions. The restrictions are first, that, in the kinetic code, rather fine resolution is

needed.
Within fluid codes, a code employing energy conservation (R(j)) is distinctly preferable. Perhaps surpris-

ingly, the fluid code – R(j) must employ similarly small Dx (and Dt) as the kinetic code. Within the prop-

agator method, it was necessary to calculate a set of corrections for the displacement dxE which ensure that

d�x ¼ dxE. Consequently, the propagator method gives very close agreement in predicted densities (in the

absence of ionization) over a wide range of Dx and Dt. The fluid model using propagator method and

the kinetic model (CS) have also been briefly studied with an AC field.

One of the issues which we plan to investigate in future is the possibility of allowing for the particles

leaving a cell being more or less energetic than the average. We will attempt to tabulate the energy that
particles have, when traveling up and downstream, as a function of the mean energy in the initial cell
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and of the electric field. Then we will be able to allow particles leaving a cell to have more energy than the

mean energy in that cell. That energy will be subtracted from the total in the initial cell, to maintain energy

conservation. We will also calculate a separate value for a for the injected particles newly entering a cell,

since a will be a different function of kinetic energy for injected particles than it is for the particles which

stay in a cell.
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Appendix A. The list of mean displacement corrections for dxE

See Table A.1.
Table A.1

The corrections of mean displacement, dx0E, for dxE

Condition Value of dx0E

(A) jdxEj < dxD
jdxEj + dxD 6 Dx �jdxE j

2Dx Cl
*; but if jdx0E j>dxD

a, dx0E¼� jdxE j
Dx Cl�dxD

h i
jdxEj + dxD P Dx If jdxEj&dxD P Dx dxE

else � 1
3

jdxE j
Dx Cl � dxD þ Dx

h i

(B) jdxEj>dxD
jdxEj + dxD 6 Dx � jdxE j

Dx Cl�dxD
h i

; but if jdx0E j<dxD
a dx0E¼�jdxrmE j

2Dx Cl

jdxEj + dxD P Dx If jdxEj&dxD P Dx dxE
If jdxEj 6 Dx � 1

2
jdxE j
Dx Cl � 2dxD þ Dx

h i

If jdxEjP Dx, jdxEj + dxD 6 2Dx dxD 6 dxE � int(dxE) � jdxE j
Dx Cl � 3dxD

h i

else � 1
2

jdxE j
Dx Cl � 2dxD þ Dx

h i
else dxE

a This condition must be checked after the correction since it might change the case from A to B and vice versa.
* Cl = Dx + 2dxD.
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